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Abstract

Metallic sandwich panels with textile cores have been analyzed subject to combined bending and shear and then

designed for minimum weight. Basic results for the weight benefits relative to solid plates are presented, with emphasis

on restricted optimizations that assure robustness (non-catastrophic failure) and acceptable thinness. Select numerical

simulations are used to check the analytical results and to explore the role of strain hardening beyond failure initiation.

Comparisons are made with competing concepts, especially honeycomb and truss core systems. It is demonstrated that

all three systems have essentially equivalent performance. The influence on the design of a concentrated compressive

stress that might crush the core has been explored and found to produce relatively small effect over the stress range of

practical interest. ‘‘Angle ply’’ cores with members in the �45� orientation are found to be near optimal for all

combinations of bending, shear and compression.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Concepts for metallic sandwich structures suitable for lightweight/multifunctional application have been

presented in recent articles (Wicks and Hutchinson, 2001; Rathbun et al., submitted for publication;
Deshpande and Fleck, 2001; Chiras et al., 2002; Mumm et al., 2002). Several truss core designs have been

devised. Truss designs use the principle that, when incorporated into a panel and subjected to shear, the

core members stretch/compress without bending. Tetrahedral, pyramidal and Kagome configurations

satisfying this principle have been analyzed, fabricated and tested. Their basic attributes as lightweight

structures have been ascertained by performing an optimization that finds the minimum weight needed to

support specified loads without failure and then representing the results in non-dimensional, material in-

dependent coordinates (Wicks and Hutchinson, 2001). Comparisons with solid plates and honeycomb

panels have been used to specify relative performance and cost benefits.
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Fig. 1. Relationship between ‘ and loading span S for common test configurations, with (a)–(c) uniformly distributed pressure, and

(d)–(f) concentrated loads.
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For a panel subject to bending, supported over a span length, S, the load index combines the sustainable

bending moment,M, and transverse shear, V (both per unit width) in the non-dimensional form (Wicks and

Hutchinson, 2001):
1 T

Mumm
P ¼ Vffiffiffiffiffiffiffiffi
EM

p ð1Þ
where E is the Young�s modulus. The ratio of M and V defines a characteristic length scale, ‘ � M=V :
which, since M and V vary with location, should be ascertained from the maximum values. Results for some

common loading configurations are shown in Fig. 1. In all cases, ‘ is proportional to S, with a propor-

tionality constant in the range 1/6–1. The panel weight per unit area, W , is conveniently expressed in the

non-dimensional form: 1
W ¼ W
q‘

ð2Þ
where q is the density of the material.

When comparing minimum weight results for different configurations, some practical constraints should

be imposed. For example, lowest weights often coincide with panels having unacceptably large thickness,

Hp, relative to span. Restricted optimizations are needed subject to, say, Hp=‘6 0:2. Full consideration of

all potential failure modes (notably, face yielding and wrinkling, as well as core member yielding and

buckling) allows such comparisons (Fig. 2). The ensuing minimum weights and operative failure mecha-

nisms depend on the yield strain for the material, ey , which must be specified when comparisons are made.

A comparison for panels made with high yield strain alloys (representative of high strength Al) reveals that
the tetrahedral truss core panel has essentially the same performance as the honeycomb core system (Fig.

2). The implication is that the benefits of the truss core do not reside in its performance, but rather, in lower

manufacturing cost, especially in curved configurations, and when multifunctionality is exploited. The
he weight index is consistent with the one in Wicks and Hutchinson (2001), but differs from that adopted by Evans (2001) and

et al. (2002), notably W ¼ W =qS, by a factor ðS=‘Þ. This factor depends on loading configuration, as illustrated in Fig. 1.



Fig. 2. Weight comparisons of optimized sandwich panels with one of three core types: textile, truss and honeycomb. Results for the

truss core and honeycomb core panels taken from Wicks and Hutchinson (2001). The solid symbols on the curves for the textile core

and the truss core panels indicate the points at which the core thickness reaches the prescribed limit: Hc=‘ ¼ 0:1.
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latter is exemplified by designing the panel to simultaneously bear load and provide cooling (Gu et al.,

2001). Experimental assessments have demonstrated that manufacturing approaches rendering truss cores
with wrought (rather than cast) properties are preferred (Rathbun et al., submitted for publication; Sypeck

and Wadley, 2002), because of superior robustness, as well as lower costs.

One approach for the design and manufacturing of wrought cores uses textile technology (Mumm et al.,

2002). Woven metal textiles are stacked and transient liquid phase (TLP) bonded at the nodes, followed by

TLP bonding to face sheets. The approach has the potential for lower cost than both truss cores and

honeycombs because of the lower material costs as well as the relative simplicity of the fabrication. The

basic concept has been demonstrated (Mumm et al., 2002): but the assessment was confined to cores with

relative density (�qqc � 0:2) much larger than those pertinent to minimum weight designs. This article
elaborates on the concept, with the objective of finding optimal configurations and comparing with truss

and honeycomb designs.

One of the key findings of the initial study (Mumm et al., 2002) was the criticality of the textile core

orientation. Namely, in the 0�/90� orientation, the textile core members experience bending when a shear is

imposed, resulting in low strength and stiffness. Conversely, in the �45� orientation, the members expe-

rience either tension or compression (no bending) resulting in a strong/stiff core. This orientation and other

�c� configurations are emphasized in this study. The ensuing analyses use simplified expressions for the

stresses, neglecting details at textile crossovers and attachments to the faces. To be conservative, the
‘‘failures’’ coincide with the onset of either yield or buckling. In practice, for certain failure modes, strain

hardening can lead to limit loads significantly in excess of the onset conditions. The associated enhance-

ments in load capacity are explored by means of selected numerical simulations.

The practical implementation of sandwich panels is often limited by failure caused by concentrated

compressive stresses. In such cases, the cores can crush locally, accompanied by plastic hinging of the outer

face (Ashby et al., 2000). The incidence of this failure mode is most strongly affected by the compressive

strength of the core. This mode is analyzed and used as a new constraint on the minimum weight design.

A logical evolution of ideas governing the designs is facilitated by using the following organization.

(i) The textile geometry is described.

(ii) The failure modes are analyzed.

(iii) To ascertain minimum weights, an optimization is performed for panels subject to combinations of

bending and shear.
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(iv) Restricted optimizations are performed that ensure robustness and also impose limits on panel thick-

ness.

(v) A comparison is made with solid panels at equivalent weight.

(vi) Numerical simulations are performed to assess the analytical results and to explore effects of strain
hardening.

(vii) Textile core panels are compared with competing concepts.

(viii) The effects on the minimum weights of concentrated compressive loads are examined.

(ix) The influence of the textile ‘‘ply angle’’ on the performance is analyzed.

Unless otherwise stated, all of the results are presented for a material with yield strain, ey ¼ 0:001, repre-
sentative of steels, as well as Ni and Cu alloys. A few results are presented for ey ¼ 0:004 and 0.007,

pertinent to some high strength Al and Ti alloys.
2. Geometry

The textile core panel (Fig. 3) consists of two face sheets, thickness tf , and a core, thickness Hc. The core

and the face sheets are made from the same material, with Young�s modulus E, yield strength ry , and

density q. The wires comprising the core have radius R and a separation length L. The spacing between the

textile layers, measured normal to the plane of Fig. 3, is 2aR where a � 2. For most of the subsequent

analysis, the �45� orientation is explored. It will be shown that, absent transverse compression, this

configuration is optimal. When a transverse compression is superposed, the preferred configuration changes
to a �c ‘‘angle ply’’ with c < 45� (Section 10).

The wires are considered well bonded both at the crossovers and at the face sheets. The attachments to

the face sheets are uncorrelated between adjacent layers. 2 The absence of a periodic arrangement across the

panel precludes face sheet buckling, thereby excluding one of the failure mechanisms found in truss core

panels (Wicks and Hutchinson, 2001). But it introduces an alternate potential failure mode, notably face

wrinkling (Ashby et al., 2000).

Provided that L=R � 1, the relative core density qc can be approximated by:
2 T

have b
qc �
pR
aL

ð3Þ
Furthermore, if Hc=tf � 1, the sandwich panel thickness, Hp, can be approximated by Hp ¼ 2tf þ Hc � Hc.

The non-dimensional weight index then becomes:
W ¼ 2tf
‘
þ qcHc

‘
¼ 2tf

‘
þ pRHc

aL‘
ð4Þ
Eq. (4) is the objective function that we seek to minimize.
3. Failure modes under bending and shear

3.1. Core failure

The core experiences failure as a consequence of the shear force, V . The core members are regarded as

slender columns that support only axial load and no bending moment. Then, the average axial stress in the

core members, rz, is related to V by:
he degree of correlation in the attachment points can be tailored in the manufacturing operation. Highly periodic arrangements

een obtained (Mumm et al., 2002), although random ones can be made also (Wadley, 2003).



Fig. 3. Schematic of the textile core sandwich panel.
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rz ¼
2aLV
pRHc

ð5Þ
Equating rz to the yield strength of the members, ry , gives the transverse shear load upon core yielding

(Mumm et al., 2002):
Vy ¼
pRHcry

2aL
ð6Þ
Elastic buckling of the core members is strongly affected by the rotational stiffness of the crossovers. For

conservatism, we assume that the crossovers are pin-jointed (k ¼ 1) and that L is the buckling half-wave-

length. In practice, the rotational stiffness of the nodes could enhance the strength by a factor 2. Equating

the axial member stress (Eq. (5)) to the Euler buckling stress (Timoshenko and Gere, 1961), the critical

shear load becomes:
VB ¼ kp3ER3Hc

8aL3
ð7Þ
3.2. Failure in the faces

The face failure modes are dictated by the bending moment, M . Face yielding occurs when the normal

stress reaches the yield strength, which occurs at bending moment (Ashby et al., 2000)
My ¼ tfHcry ð8Þ
Provided the spacing between attachment points is smaller than the face sheet thickness, face wrinkling

occurs when (Ashby et al., 2000)
Mw ¼ tfHc1E
qc

2

� �2=3

ð9Þ
where 1 � 0:58. This result may be non-conservative when the attachment spacing exceeds the face sheet

thickness. Nevertheless, the subsequent results show that this failure mode is operative in the optimized
structures only at exceedingly low loads, well below those of practical interest. Consequently, refinements to

the critical bending moment are deemed unnecessary for the current design optimization.
4. Design optimization

An optimization has been performed to determine the minimum weight, subject to the requirement that
the panel support a prescribed combination of M and V without failure. All length scales are normalized by
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‘ (Wicks and Hutchinson, 2001). The four parameters characterizing the panel geometry are: x1 � tf=‘,
x2 � R=‘, x3 � L=‘, and x4 � Hc=‘. Accordingly, the objective function (Eq. (4)) is re-written as:
W ¼ 2x1 þ
px2x4
ax3

ð10Þ
4.1. The constraints

The constraints are dictated by the four failure modes (Eqs. (6)–(9)). Upon normalizing, the parameters

x3 and x2 appear only as a ratio, g � x3=x2 ¼ L=R, enabling the constraints to be expressed as:
V 2

EM

� �
1

eyx1x4

� �
6 1 Face yielding ð11aÞ

V 2

EM

� �
1

1x1x4

� �
2ag
p

� �2=3

6 1 Face wrinkling ð11bÞ

V 2

EM

� �
2ag
px4ey

� �
6 1 Core yielding ð11cÞ

V 2

EM

� �
8ag3

p3kx4

� �
6 1 Core buckling ð11dÞ
4.2. Confluence of failure mechanisms

The design point at which face yielding and wrinkling occur simultaneously is obtained by equating the

left sides of Eqs. (11a) and (11b). The result can be expressed in terms of either a critical aspect ratio,
g� � L
R

� ��

¼ p
2a

1
ey

� �3=2

ð12aÞ
or a critical core density (via Eq. (3)):
q�
c ¼ 2

ey
1

� �3=2

ð12bÞ
For typical yield strains (ey � 0:001), face wrinkling occurs for aspect ratios greater than ðL=RÞ� ¼ 104 and

core densities less than �qq�
c ¼ 10�4, well outside the practical range. Consequently, the optima are attained at

the confluence of the three remaining potential failure modes.

Simultaneous face yielding and core buckling is characterized by setting the constraints in Eqs. (11a) and

(11d) equal to unity and combining the result with the objective function (Eq. (10)). This yields the non-
dimensional weight:
W ¼ kp3

4ag3ey
þ 8V 2g2

EMkp2
ð13Þ
The minimum weight and the associated geometric parameters are obtained by setting oW=og ¼ 0, giving
Wo ¼ 5

3

Vffiffiffiffiffiffiffiffi
EM

p
� �6=5

6

aey

� �2=5
2

k

� �1=5

ð14aÞ
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go ¼ p
Vffiffiffiffiffiffiffiffi
EM

p
� ��2=5

3k2

64aey

� �1=5

ð14bÞ
xo1 ¼
Vffiffiffiffiffiffiffiffi
EM

p
� �6=5

8

27ka2e2y

 !1=5

ð14cÞ
xo4 ¼
Vffiffiffiffiffiffiffiffi
EM

p
� �4=5

27a2k
8e3y

 !1=5

ð14dÞ
Upon comparing Eqs. (11c) and (11d), it becomes apparent that, once L=R diminishes below a transition

value, gtr, core failure occurs by yielding rather than buckling. The transition happens when:
gtr ¼
p
2

k
ey

� �1=2

ð15Þ
Once Eq. (15) is satisfied, thereafter the optimum occurs at the confluence of face and core yielding. The

optimum is coincident with the lowest core density that consistently permits failure by yielding (that is,

when g ¼ gtr), giving:
Wo ¼ 2

ak
ey
k

� �1=2
þ V 2

EM

� �
2

ey

� �
ð16Þ
For this design, the three failure modes occur concurrently. The optimal core thickness in this domain is:
xo4 ¼
a
ffiffiffi
k

p

e3=2y

 !
V 2

EM

� �
ð17Þ
The critical core thickness at which core yielding is activated in the optimized panel is obtained from a

comparison of Eqs. (14d) and (17). This occurs at x�4 ¼ Hc=‘ ¼ 3=2. The implication is that extremely thick

panels are required, well beyond the range representative of thin plates. Consequently, this domain is

neglected in the subsequent restricted optimizations and weight comparisons.
4.3. Optimal designs

The results of the optimization are plotted in Fig. 4, for a ¼ 2, k ¼ 1, and yield strains ey ¼ 0:001, 0.004
and 0.007. The active failure modes are core buckling and face yielding over essentially the entire load

range. 3 Also shown for comparison is the weight of a solid plate with a strength equivalent to that of the

sandwich panel, given by:
Ws ¼
6E
ry

� �1=2 Vffiffiffiffiffiffiffiffi
EM

p ð18Þ
The weight benefits of the sandwich panels over the solid plate are evident.
e exception is that face wrinkling becomes active at extremely low loads, typically V =
ffiffiffiffiffiffiffiffi
EM

p
< 10�7.



Fig. 4. Sandwich panels optimized for shear and bending, showing effects of the yield strain. Face yielding and core buckling are active

over the load range shown. Results are based on parameter values a ¼ 2 and k ¼ 1. Although not shown here, the effects of k are small;

since the weight scales as k�1=5, using the upper limit of k ¼ 2 would produce a weight reduction of 13%.
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5. Restricted optimizations

5.1. Robustness

The preceding optimizations require that the panel support a prescribed combination on M and V up to

initial failure. For robust performance beyond initiation, modes that allow significant plastic deformation

without localization are preferred. Elastic core buckling is the least desirable. Core yielding is also unde-

sirable since it is superceded by unstable plastic buckling at quite small plastic strains. Face yielding is the

most desirable since large deformations can occur without instability. Accordingly, to design lightweight

panels that are both strong and robust, a series of restricted optimizations can be performed for parameters
that lead to face yielding. This objective is accomplished by fixing g below the buckling threshold (Eq.

(14b)) and restricting the loads to avert core yielding.

Optimal designs are obtained by first combining the constraint in Eq. (11a) with the objective function in

Eq. (10). The result is
W ¼ 2

x4ey

� �
V 2

EM

� �
þ px4

ag
ð19Þ
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The optimal values, obtained by setting ðoW=ox4Þg ¼ 0, are
Fig. 5.

Solid s

Hc=‘ ¼
Wo ¼ 2Vffiffiffiffiffiffiffiffi
EM

p 2p
agey

� �1=2

ð20aÞ
xo1 ¼
Vffiffiffiffiffiffiffiffi
EM

p p
2agey

� �1=2

ð20bÞ
xo4 ¼
Vffiffiffiffiffiffiffiffi
EM

p 2ag
pey

� �1=2

ð20cÞ
xo4
xo1

� Hc

tf
¼ 2ag

p
� 4L

pR
ð20dÞ
The results are compared with those of the fully optimized panels in Fig. 5(a). Note that the strength benefit

diminishes with decreasing g because the panels are non-optimal. However, such panels should be more

robust. Note that the design characterized by Eq. (20d) is independent of both the load index, V =
ffiffiffiffiffiffiffiffi
EM

p
and

the yield strain, ey . Such simple rules do not emerge for the fully optimized panel.
5.2. Core thickness

The restriction on core thickness is imposed for the domain in which face yielding and core buckling

occur concurrently. The constraints in Eqs. (11a) and (11c) are combined with Eq. (10), but now x4 is taken
to be constant, at a prescribed xmax

4 . The resulting panel weight is
Wo ¼ Vffiffiffiffiffiffiffiffi
EM

p
� �2

2

eyxmax
4

þ 8

k

� �1=3 xmax
4

a
Vffiffiffiffiffiffiffiffi
EM

p
� �2=3

ð21Þ
The results for xmax
4 ¼ 0:1, 0.2 and 0.3 are plotted on Fig. 5(a). At small loads, the core thickness for the

optimized panel falls below the prescribed limit, negating the restriction. At large loads, the limiting core
(a) Comparisons of fully optimized sandwich panels with those restricted to having either a fixed L=R or a maximum Hc=‘.

ymbols show the points at which the core thickness in the fully optimized panel reaches one of the three prescribed limits:

0:1, 0.2 or 0.3. (b) A re-interpretation of the results in (a), showing weight reduction relative to a solid plate.
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thickness dominates the design. In the latter, while the weight benefit of the sandwich panel diminishes, the

performance remains superior to that of the solid plate.
6. Weight comparisons with solid plates

To quantify the weight benefits, the preceding optimizations have been re-expressed in terms of the ratio
of the weight of the sandwich panel to that of the solid plate. The pertinent ratios are as follows.

(i) For the fully optimized panel:
Wo

Ws

¼ 5

3

2

a2k
Vffiffiffiffiffiffiffiffi
EM

p
� �1=5 ey

6

� �1=10
ð22aÞ
(ii) For robust panels designed to fail by face yielding:
Wo

Ws

¼ 4p
3ag

� �1=2

�
ffiffiffiffiffiffi
2R
L

r
¼ 1:1

ffiffiffiffiffi
�qqc

p
ð22bÞ
(iii) For panels that must be thinner than a prescribed thickness:
Wo

Ws

¼ 2Vffiffiffiffiffiffiffiffi
EM

p 1

6ey

� �1=2
1

xmax
4

þ xmax
4

a

� �2=3
8

k

� �1=3 ey
6

� �1=2 Vffiffiffiffiffiffiffiffi
EM

p
� �1=6

ð22cÞ
The results are plotted in Fig. 5(b). Note that, for the panel designed to fail by face yielding, the weight is

independent of the load index and yield strain and given simply by: Wo=Ws ¼ 1:1
ffiffiffiffiffi
qc

p
. Recall that the

corresponding design rule is: Hc=tf ¼ 2=qc.
7. Numerical results

Select numerical simulations have been performed with two objectives: (a) to verify the results presented
on Fig. 5, and (b) to examine the robustness that can be realized with a strain hardening material subse-

quent to failure initiation. For this purpose, a constitutive law for the textile core has been devised and

implemented in the ABAQUS finite element code. It is based on the law derived for foam cores, modified to

fit the deformation characteristics of the textile system (Ashby et al., 2000; Wei et al., 2003). The con-

stitutive law is elliptic (no corners), containing terms associated with yielding subject to shear and pressure.

The calibration of the unknown coefficients involves tests and analysis conducted for combinations of shear

and pressure that probe the ellipticity of the surface. Strain hardening can be incorporated by using as input

the stress/strain curve measured in uniaxial compression.
To be conservative, the core response has been taken to be elastic/perfectly plastic, with compressive

yield stress rc
y � ryqc=2 and shear yield stress scy ¼ rc

y . To assess performance in the face yielding domain,

the core member aspect ratio has been varied over the range 106L=R6 40 and the relative core thickness

taken to be Hc=tf ¼ 4L=pR (Eq. (20d)). The plate dimensions were varied to produce Hc=‘ in the range 0.1–

0.4. The elastic/plastic response of the face sheets was selected to represent annealed stainless steels:

Young�s modulus E ¼ 200 GPa, yield strength ry ¼ 200 MPa and linear hardening after yield with a

tangent modulus ET ¼ E=100 ¼ 2 GPa. The simulated plates were built-in, and loaded either by a con-

centrated center load (Fig. 1(f)) or by a uniformly distributed pressure (Fig. 1(c)).
Results for strength, defined by the onset of face yielding, are plotted in Fig. 6, and compared with the

analytical solutions (Eqs. (20)). The simulations yield a slightly higher strength at given weight, by about



Fig. 6. Comparisons of numerical results (symbols) with analytical model (solid lines), for restricted optimizations with fixed L=R:
(a) panel weight, and (b) core thickness. Solid symbols are for a concentrated center load (Fig. 1 (f)) and open symbols for a uni-

formly distributed pressure (Fig. 1 (c)).
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5–10%. This is consistent with the conservative assumptions in the analytical model, notably: (i) that

Hp � Hc, (ii) that the bending is carried solely by the face sheets and (iii) that the shear is carried solely by
the core. Each simplification leads to a slight underestimate in strength, although the combined effect re-

mains comparatively small. Interestingly, the analytical model provides accurate estimates even for the

thickest cores used in the simulations, Hc=‘ � 0:4.
The normalized load–displacement responses, RðDÞ, are plotted in Fig. 7, illustrating the effect of core

member aspect ratio, L=R, at fixed panel weight (W ¼ 0:03). For these normalizations, yielding initiates in

the solid plate at R ¼ 1, D ¼ 1. Note that the sandwich panels exhibit significant elevations in strength over

the solid plate, with the advantages increasing linearly with L=R: attaining R > 10 for the highest L=R.
Equally significant is the rise in the load–displacement response beyond initial yield. For instance, for
L=R ¼ 40, the load-bearing capacity is nearly doubled, R=Ry � 2, after a displacement D=Dy � 5 (where Dy
Fig. 7. Numerical simulations of load–displacement response of sandwich panels subjected to a uniformly distributed pressure, each of

weight W ¼ 0:03, but with varying L=R. Here H is the thickness of the equivalent solid plate and P is the total load. For reference, the

yield load of the equivalent solid plate is R ¼ 1.
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and Ry are the displacement and load at yield). Such robust behavior would not be obtained in panels

designed to fail by buckling.
8. Comparisons with competing concepts

Comparisons have been made with two competing sandwich concepts: one based on a truss core in a

tetrahedral configuration and the other a honeycomb core (Wicks and Hutchinson, 2001). Weight com-

parisons have been presented in Fig. 2 for panels with ey ¼ 0:007. The results for the truss core panels are

based on a full optimization, analogous to that presented above in Section 4. Over the entire load range
used in the figure, the thickness of the optimized truss core panel satisfies a thin plate requirement,

Hc=‘6 0:1. The optimized honeycomb core panel is exceedingly thick over the same load range. Accord-

ingly, for a meaningful comparison, the results have been restricted to a core thickness, Hc=‘ ¼ 0:1. The
optimized textile core panels are intermediate in the sense that the cores satisfy the thin plate requirement to

the left of the solid symbol, but to the right are restricted by Hc=‘ ¼ 0:1.
The comparisons indicate that there is essentially no difference between the three core topologies.

Consequently, as surmised above, the benefits of the textile system reside in lower manufacturing cost,

especially in non-planar configurations, and when multifunctionality is utilized. Differences in robustness,
following failure initiation, have yet to be explored.
9. Panels with superposed compressive loads

The preceding optimizations have been extended to include the influence of a concentrated compression,
r, at the loading points, having magnitude relative to the shear stress characterized by a non-dimensional

parameter,
b � rHc

V
ð23Þ
For cases of practical interest, the compression is bounded approximately by 06 b6 2 (Appendix A). The

axial member stress due to the combined action of the compression and the shear is:
rz ¼
2aLV ð1þ bÞ

pRHc

ð24Þ
The modified constraints for core failure are obtained by setting rz equal to the critical values for yielding

and buckling. The results are:
V 2

EM

� �
2agð1þ bÞ

px4ey

� �
6 1 Core yielding ð25aÞ
V 2

EM

� �
8ag3ð1þ bÞ

kp3x4

� �
6 1 Core buckling ð25bÞ
The constraints for face failure remain unchanged (Eqs. (11a) and (11b)).

The optimal values of the weight and the associated geometric parameters are obtained through the

optimization procedure described in Section 4. For the domain wherein face yielding and core buckling are
active, the optimal values are:



Fig. 8.

(b) opt
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Wo ¼ 5

3

Vffiffiffiffiffiffiffiffi
EM

p
� �6=5

6

aey

� �2=5
2ð1þ bÞ

k

� �1=5

ð26aÞ

go ¼ p
Vffiffiffiffiffiffiffiffi
EM

p
� ��2=5

3k2

64aeyð1þ bÞ2

 !1=5

ð26bÞ

xo1 ¼
Vffiffiffiffiffiffiffiffi
EM

p
� �6=5

8ð1þ bÞ
27ka2e2y

 !1=5

ð26cÞ

xo4 ¼
Vffiffiffiffiffiffiffiffi
EM

p
� �4=5

27a2k
8e3yð1þ bÞ

 !1=5

ð26dÞ
At high loads, core yielding is active also. But, as for the case with only shear and bending, this mode is

activated only for very thick cores: specifically x�4 ¼ Hc=‘ ¼ 3=ð2ð1þ bÞÞ. For b ¼ 2, x�4 ¼ 0:5, beyond the

limit of thin plates.

The increase in weight due to the added compression is small: varying as ð1þ bÞ1=5 in the domain of

interest, where face yielding and core buckling are active (Fig. 8(a)). For instance, in an extreme case,
wherein the magnitude of the compression equals the shear (b ¼ 1), the panel is about 15% heavier. The

effects of compression on the geometric parameters are similarly small, as evidenced by the weak power law

scalings with (1þ b) in Eqs. 26(b)–(d).
10. Optimal weave angle

In this section, the optimal weave angle co for combined bending, shear and compressive loads is derived.
The core density and panel weight for an arbitrary weave angle c are given approximately by:
qc ¼
p

2ag sin c cos c
ð27aÞ
Sandwich panels optimized for compression, shear and bending. Effects of compression, b, on (a) weight of optimized panel and

imal weave angle co.
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W ¼ 2x1 þ
px4

2ag sin c cos c
ð27bÞ
Noting that the axial member stress is:
rz ¼
2aLV ð1þ b tan cÞ

pRHc

ð28Þ
the constraints for core failure become:
V 2

EM

� �
2agð1þ b tan cÞ

px4ey

� �
6 1 Core yielding ð29aÞ
V 2

EM

� �
8ag3ð1þ b tan cÞ

kp3x4

� �
6 1 Core buckling ð29bÞ
The constraints for face failure remain unchanged (Eqs. (11a) and (11b)). The optimal values of g and c are
obtained by first equating the left sides of Eqs. (11a) and (29b), then combining with the modified objective

function, Eq. (27b), and, finally, setting ðoW=ocÞg ¼ 0 and ðoW=ogÞc ¼ 0. The results of this procedure are

as follows.

The optimal weave angle is given by the implicit function:
cos2 co

b
ð1þ b tan coÞðcot co � tan coÞ ¼ 1

3
ð30aÞ
The solution (Fig. 8(b)) indicates that, in the limit b ¼ 0 (no compression), the optimal angle is co ¼ 45�, as
already noted. In another limit, b ! 1, the optimum is co ¼ 35:3�. The corresponding panel weight and

optimal aspect ratio for all b are:
Wo ¼ 5

3

Vffiffiffiffiffiffiffiffi
EM

p
� �6=5

3

aey

� �2=5
1

k

� �1=5 ð1þ b tan coÞ1=5

ðsin co cos coÞ3=5
ð30bÞ
go ¼ p
2

Vffiffiffiffiffiffiffiffi
EM

p
� ��2=5

3k2

aey

� �1=5
sin co cos co

ð1þ b tan coÞ2

 !1=5

ð30cÞ
Representative results for the minimum weight (Fig. 8(a)) indicate that the effects of weave angle are ex-

ceedingly small. The maximum benefit arises for large b. But even in the limit b ! 1, the optimized panel

is only 3.3% lighter. Accordingly, cores with c ¼ 45� are near optimal for all load combinations.
11. Concluding remarks

Textile core sandwich panels can be designed to support bending and shear loads with weights as much

as an order of magnitude lower than that of an equivalent solid plate. When designed to a failure initiation

criterion, the textile core panels are comparable to those utilizing other lightweight cores, including hon-

eycombs and trusses. Experiments are in progress to validate the failure models, as well as the comparisons

of the core topologies on the basis of robustness, for combined compressive, bending and shear loads. New

metrics that combine performance and manufacturing cost into a single structural index are being devised
as a means for allowing explicit selection of the preferred core.
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Appendix A

When bending moments are induced through concentrated transverse loads, failure can occur by in-

dentation at the loading points. This mode involves yielding of the core and formation of plastic hinges

within the face sheet adjacent to the indenter. Analysis yields a critical indentation pressure, PI, given by

(Ashby et al., 2000):
PI ¼ rc
y þ

2tf
w

ffiffiffiffiffiffiffiffiffi
rc
yr

f
y

q
ðA:1Þ
where w is the width of the indenter used for applying load; rf
y is the yield strength of the face sheets; and rc

y

is the compressive yield strength of the core, given approximately by (Mumm et al., 2002):
rc
y �

ryqc

2
ðA:2Þ
Combining Eqs. (A.1) and (A.2), and assuming that the face sheets and the core are made of the same
material, with yield strength ry , the indentation pressure becomes:
PI ¼ rc
y 1

 
þ 2tf

w

ffiffiffiffiffi
2

qc

s !
ðA:3Þ
For loading configurations of practical interest (Figs. 1(d)–(f)), w is selected to be at least as large as the

panel thickness: w ¼ jHc where jP 1. Moreover, for the sandwich panels under consideration here, typi-
cally Hc=tf P 10, leading to w=tf P 10j. In this domain, the indentation pressure in Eq. (A.3) can be

approximated by PI � rc
y . That is, indentation is resisted predominantly by the core, with minimal con-

tribution from the face sheet. This result is conservative for finite w=tf and exact for a uniformly distributed

pressure (Figs. 1(a)–(c)).

On this basis, the normalized compressive stress b can be obtained by taking the transverse compression

within the core to be equal to the indenter pressure and combining with the maximum shear force V in the

configuration of interest. For three point bending (either simply supported or built-in), V ¼ F =2, with F
being the applied force, and P ¼ F =w. This yields b ¼ 2=j. Similarly, for a cantilever beam, b ¼ 1=j. Thus,
for jP 1, the limits on compression for both test configurations become 06 b6 2.

The results in Fig. 8(a) extend out to b ¼ 3 and demonstrate the rather weak sensitivity of the design to

b. An even weaker dependence is obtained on the weave angle, c.
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